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5.1 Irrationality of ζ(3)1

We give the proof for the irrationality of ζ(3). This proof is achieved by means of double and triple
integrals, the shape of which is motivated by Apéry’s formulas. Like Apéry’s proof it also works for ζ(2),
which is of course already known to be transcendental since it equals π2/6. Most of the integrals that appear in
the proof are improper. The manipulations with these integrals can be justified if one replaces

∫ 1
0 by

∫ 1−ε
ε and

by letting ε tend to zero.
Throughout this paper we denote the lowest common multiple of 1, 2, . . . , n by dn. The value of dn can

be estimated by
dn =

∏
Prime
p⩽n

p[logn/ log p] <
∏

Prime
p⩽n

plogn/ log p,

and the latter number is smaller than 3n for sufficiently large n.

Lemma 5.1

♡

Let r and s be non-negative integers. If r > s then,
(a)

∫ 1
0

∫ 1
0

xrys

1−xydxdy is a rational number whose denominator is a divisor of d2r .
(b)

∫ 1
0

∫ 1
0 − log xy

1−xy x
rysdxdy is a rational number whose denominator is a divisor of dr3.

If r = s, then
(c)

∫ 1
0

∫ 1
0

xryr

1−xydxdy = ζ(2)− 1
12

− . . .− 1
r2

,
(d)

∫ 1
0

∫ 1
0 − log xy

1−xy x
ryrdxdy = 2

{
ζ(3)− 1

13
− . . .− 1

r3

}
.

Proof Let σ be any non-negative number. Consider the integral∫ 1

0

∫ 1

0

xr+σys+σ

1− xy
dxdy (5.1)

Develop (1− xy)−1 into a geometrical series and perform the double integration. Then we obtain
∞∑
k=0

1

(k + r + σ + 1)(k + s+ σ + 1)
(5.2)

Assume that r > s. Then we can write this sum as
∞∑
k=0

1

r − s

{
1

k + s+ σ + 1
− 1

k + r + σ + 1

}
=

1

r − s

{
1

s+ 1 + σ
+ . . .+

1

r + σ

}
. (5.3)

If we put σ = 0 then assertion (a) follows immediately. If we diflerentiate with respect to σ and put σ = 0,
then integral 5.1 changes into ∫ 1

0

∫ 1

0

log xy

1− xy
xrysdxdy

and summation 5.3 becomes
−1

r − s

{
1

(s+ 1)2
+ . . .+

1

r2

}
.

1This is a copy of Beukers, Frits. ”A note on the irrationality of ζ(2) and ζ(3).” Pi: A Source Book. Springer, New York, NY, 2004.
434-438.
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Assertion (b) now follows straight away. Assume r = s, then by 5.1 and 5.2,∫ 1

0

∫ 1

0

xr+σyr+σ

1− xy
dxdy =

∞∑
k=0

1

(k + r + σ + 1)2
.

By putting σ = 0 assertion (c) becomes obvious. Differentiate with respect to σ and put σ = 0. Then we obtain∫ 1

0

∫ 1

0

log xy

1− xy
xryrdxdy =

∞∑
k=0

−2

(k + r + 1)3
,

which proves assertion (d).

Theorem 5.1

♡ζ(3) is irrational.

Proof
Consider the integral ∫ 1

0

∫ 1

0

− log xy

1− xy
Pn(x)Pn(y)dxdy, (5.4)

wheren!Pn(x) =
{

d
dx

}n
xn(1−x)n. It is clear from Lemma 5.1 that integral 5.4 equals (An +Bnζ(3)) d

−3
n

for some An ∈ Z, Bn ∈ Z. By noticing that
− log xy

1− xy
=

∫ 1

0

1

1− (1− xy)z
dz

integral (6) can be written as ∫
Pn(x)Pn(y)

1− (1− xy)z
dxdydz

where
∫

denotes the triple integration. After an n-fold partial integration with respect to x our integral changes
into ∫

(xyz)n(1− x)nPn(y)

(1− (1− xy)z)n+1
dxdydz (5.5)

Substitute
w =

1− z

1− (1− xy)z
.

We obtain ∫
(1− x)n(1− w)n

Pn(y)

1− (1− xy)w
dxdydw.

After an n-fold partial integration with respect to y we obtain∫
xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw.

It is straightforward to verify that the maximum of

x(1− x)y(1− y)w(1− w)(1− (1− xy)w)−1

occurs for x = y and then that
x(1− x)y(1− y)w(1− w)

1− (1− xy)w
⩽ (

√
2− 1)4 for all 0 ⩽ x, y, w ⩽ 1.

Hence integral 5.4 is bounded above by

(
√
2− 1)4n

∫
1

1− (1− xy)w
dxdydw = (

√
2− 1)4n

∫ 1

0

∫ 1

0

− log xy

1− xy
dxdy = 2(

√
2− 1)4nζ(3).

Since integral 5.5 is not zero we have

0 < |An +Bnζ(3)| d−3
n < 2ζ(3)(

√
2− 1)4n
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and hence
0 < |An +Bnζ(3)| < 2ζ(3)d3n(

√
2− 1)4n < 2ζ(3)27n(

√
2− 1)4n <

(
4

5

)n

for sufficiently large n, which implies the irrationality of ζ(3).
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